Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nazan Ocak Ískeleli, ${ }^{\text {a }}$ Canan

 Kazak, ${ }^{\text {a }}$ Cumhur Kırılmıṣ ${ }^{\text {b }}$ and Murat Koca ${ }^{\text {b }}$${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and ${ }^{\mathbf{b}}$ Fırat University, Faculty of Science and Art, Department of Chemistry, TR-23169 Elazıǧ, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.073$
$w R$ factor $=0.195$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Acetyl-3-(benzoylamino)-1-benzofuran

The title compound, $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$, displays the characteristic features of benzofuran derivatives. The molecule is nearly planar. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, together with $\pi-\pi$ stacking interactions, helps to stabilize the structure.

Comment

The 2 - and 3 -substituted benzofuran nucleus is a central component of a diverse class of heterocyclic natural and synthetic products that exhibit a broad range of biological activities (Nicolaou et al., 2000; Gölitzer \& Kramer, 2000). The title compound, (I), was synthesized from the reaction of 2-acetyl-3-aminobenzofuran (Ocak Iskeleli et al., 2005) with benzoyl chloride in dry acetone.

The benzofuran ring system of the title compound, (I), is planar, with a maximum deviation from the plane of 0.050 (6) \AA for atom C4 (Fig. 1). The dihedral angle between the benzofuran ring system and the phenyl ring is $2.47(13)^{\circ}$. The $\mathrm{C}=\mathrm{O}$ bond lengths $[\mathrm{C} 11-\mathrm{O} 3=1.232(5) \AA$ and $\mathrm{C} 9-\mathrm{O} 2$ $=1.239(5) \AA$ agree with values reported in the literature (Ocak Iskeleli et al., 2005).

The crystal structure is stabilized by an intramolecular N1$\mathrm{H} 1 \cdots \mathrm{O} 2$ hydrogen bond and two $\pi-\pi$ stacking interactions. These interactions are between $C g 1(\mathrm{O} 1-\mathrm{C} 8)$ at (x, y, z) and $C g 1$ at $(1-x,-y,-z)\left[C g 1 \cdots C g 1^{1}=3.500(3) \AA\right], C g 3(\mathrm{C} 12-$ C17) at (x, y, z) and $C g 2(\mathrm{C} 1-\mathrm{C} 6)$ at $(1-x, 1-y,-z)$ $\left[C g 3 \cdots C g 2^{\text {ii }}=3.691\right.$ (3) $\left.\AA\right]$.

Experimental

A mixture of 2-acetyl-3-aminobenzofuran ($1.75 \mathrm{~g}, 10 \mathrm{mmol}$) and benzoyl chloride ($1.54 \mathrm{~g}, 11 \mathrm{mmol}$) in absolute acetone (200 ml) was stirred at room temperature for 5 h . The reaction mixture was poured

Received 12 April 2005 Accepted 25 April 2005 Online 7 May 2005

Figure 1
The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of fixed radius.

Figure 2
A packing diagram of compound (I) viewed along the a axis.
into water (400 ml) and neutralized with ammonia (5%). The title compound was filtered off, washed with water, dried and recrystallized from acetone (86%) to yield colourless crystals.

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{3}$
$M_{r}=279.28$
Monoclinic, $P 2_{1} / c$
$a=8.9283(12) \AA$
$b=7.4852(12) \AA$
$c=20.273(3) \AA$
$\beta=97.032(11)^{\circ}$
$V=1344.7(3) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.953, T_{\text {max }}=0.994$
7795 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.073$
$w R\left(F^{2}\right)=0.195$
$S=0.84$
2615 reflections
191 parameters
H -atom parameters constrained
$D_{x}=1.380 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 7057
reflections
$\theta=2.0-26.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, colourless
$0.80 \times 0.34 \times 0.08 \mathrm{~mm}$

2615 independent reflections 964 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.141$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-11 \rightarrow 10$
$k=-9 \rightarrow 9$
$l=-24 \rightarrow 24$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0791 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.015(3)
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

C1-C6	$1.361(6)$	C6-C7	$1.464(5)$
C1-O1	$1.382(5)$	C7-C8	$1.347(6)$
C1-C2	$1.415(6)$	C7-N1	$1.376(5)$
C2-C3	$1.383(7)$	C8-O1	$1.412(5)$
C3-C4	$1.346(7)$	C9-O2	$1.239(5)$
C4-C5	$1.405(6)$	C11-O3	$1.232(5)$
C5-C6	$1.399(6)$		

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.86	2.13	$2.768(5)$	131

H atoms were positioned geometrically and treated using a riding model, with aromatic $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$, methyl $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA . U_{\text {iso }}(\mathrm{H})$ values were set at $x U_{\text {eq }}$ (carrier atom), where $x=1.5$ for methyl H and 1.2 for other H atoms. Owing to the poor quality of the crystal, the $R_{\text {int }}$ and R values are somewhat high.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Arıcı, C., Ülkü, D., Kırılmış, C., Koca, M. \& Ahmedzade, M. (2004). Acta Cryst. E60, o1211-o1212.

organic papers

Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gölitzer, K. \& Kramer, C. (2000). Pharmazie, 55, 587-594.
Nicolaou, K. C., Synder, S. A., Bigot, A. \& Pfefferkorn, J. A. (2000). Angew. Chem. Int. Ed. 39, 1093-1096.

Ocak Iskeleli, N., Kazak, C., Kırılmış, C. \& Koca, M. (2005). Acta Cryst. E61, o1212-o1213.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.

